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0.1 Durable Goods and the Coase Conjecture.

As has been pointed out by Olsen [9] within the context of his linear setting we
can interpret the model also as a durable good problem in the following way.
Let v be distributed according to G (v) (which can be obtained from v (c) and
the distribution F (c)) and let c̃ ≡ v−1. Then 1−G (v) is the demand function
where the total mass of customers has been normalized to 1. Let V (Q) be the
corresponding inverse demand function. Let qt be the quantity sold at time t,
and Qt be the cumulative sales including time t :

Qt = Qt−1 + qt

Q0 = q0

Assume the following industry-wide experience effects: if the industry sold
Qt−1 units by time t and sells qt units at time t then the cost per unit of
production at time t is

C (Qt−1, qt) =

∫ Qt

Qt−1

c̃ (V (q))

qt
dq if qt > 0

C (Qt−1, qt) = c̃ (V (Qt−1)) if qt = 0

For example, if demand is linear, V (Q) = 1 − Q, and the underlying function
from the bargaining problem is c̃ (v) = v

η for some η > 1, then

C (Qt−1, qt) =
1

η

(
1−Qt−1 −

qt
2

)
Our assumption that v′ (c) > 0 implies that the costs of serving customers fall
with the cumulative sales. C (Qt−1, qt) here corresponds in the bargaining model
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to the average cost of serving the buyer conditional on a sale, completing the
usual analogy between the durable goods and bargaining problems.
A competitive equilibrium in this model is described by a sequence of prices

{pt}∞t=0 and quantities {qt}
∞
t=0 such that:

pt = C (Qt−1, qt) if qt > 0

pt ≤ C (Qt−1, qt) if qt = 0

V (Qt)− pt = δ (V (Qt)− pt+1)

The first condition is that if there are any sales in period t then firms make zero
profit. The second condition means that firms are always willing to supply the
product at prices above the current marginal cost, so for sales to be zero it must
be that prices are below current marginal costs. The last condition captures
buyer optimality: given the sequence of prices buyers choose optimally when to
buy.
Note that even if the DL equilibrium has zero profit in the limit ∆ → 0

(which is a non-generic case), it does not satisfy the conditions of competi-
tive equilibrium: during the quiet periods prices are necessarily higher than
C (Qt−1, qt) .
Finally, we stress the positive externality in this market: a firm producing

more today reduces the marginal cost to other firms both in the current period
and in the future. Since a firm does not capture that increase of total surplus,
the competitive equilibrium outcome is ineffi cient: Qt is growing too slowly. It
is effi cient to produce immediately at the level where c̃ (V (Q)) = V (Q) , but
the competitive equilibrium is only slowly converging to that total output.
In the continuous-time limit prices change continuously over time with pt =

c̃ (V (Qt)) and cumulative sales follow the following process:

Q0 = 0

r (V (Qt)− c̃ (V (Qt))) = − c̃′ (V (Qt)) Q̇t︸ ︷︷ ︸
=−ṗt

That implies:1

Proposition 1 (Weak Coase Conjecture) Consider a durable good problem.
Taking the double limit of ∆→ 0 and g → 0, in case with experience effects, the
monopolist equilibrium prices converge to the competitive equilibrium outcome.

To reiterate, the Coase Conjecture is not about effi ciency of the outcome
(as it is often interpreted) but about the monopolist acting in the limit as a
competitive industry would. With no experience effects, the competitive equi-
librium is effi cient, but here it is not. This is consistent with the original Coase

1This claim was informally discussed in Fuchs and Skrzypacz [6].
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(1972) claim that the monopolist without commitment would act no different
than competitive sellers.2

Finally, we call it the "Weak" Coase Conjecture, since we are not able to
prove that all stationary equilibria of the monopolist problem converge in the no
gap case to the competitive equilibrium outcome. The claim is just about the
double-limit. It is an open question whether a "Strong" version of the conjecture
is true, i.e. if all stationary equilibria of the monopolist problem converge to
the competitive outcome as ∆ → 0.3 The methods in Fuchs and Skrzypacz [6]
can be used to establish that all stationary equilibria with an atomless limit
do converge, but we do not know how to prove or disprove the existence of
stationary equilibria of the no gap case monopoly problem with atoms of trade
in the limit ∆→ 0.

2Since in the standard model competitive equilibrium is effi cient, the Coase conjecture is
sometimes interpreted as a claim that the monopolist with commitment will also achieve effi -
ciency. Yet, Coase (1972) stresses the comparison between the competitive and monopolistic
markets.

3Even if all stationary equilibria satisfy the Coase conjecture in the no-gap case there can
also also be non-stationary equilibira that violate the Coase Conjecture. See Ausubel and
Deneckere (1989) for the construction of such equilibria for the constant marginal cost case.
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